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Range-dependent random graphs and their application to modeling large
small-world Proteome datasets

Peter Grindrod*
Numbercraft Limited, Magdalen Centre, The Oxford Science Park, Oxford OX4 4GA, United Kingdom

~Received 21 January 2002; published 10 December 2002!

In this paper we consider the problem of characterizing and modeling large-scale networks using classes of
range-dependent graphs which possess appropriate small-world properties. The application we have in mind is
to bioinformatics, where methods of rapid protein identification mean that such proteome datasets, listing
various observed protein-protein associations, will become more and more prevalent. We introduce a class of
range-dependent graphs, governed by a power law relating intervertex range to edge probability, which are
amenable to analysis, and for which macroscopic graph parameters are given by explicit forms. We show how
these may be employed in representing a given network using a maximum likelihood approach. This in turn
annotates every given edge with its range, representing the tendency for such an association to be transitive.
We apply this technique to published proteome data, and demonstrate that known protein associations are thus
identified.

DOI: 10.1103/PhysRevE.66.066702 PACS number~s!: 02.50.Ey, 87.10.1e
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INTRODUCTION

The study of random graphs, long dominated by the w
on the Erdos-Renyi model@1#, G(n,p), where an edge be
tween any pair fromn vertices is present with a certain pro
ability, p, has recently been extended to small-world grap
@2–4#. The goal is to generate graphs with high degree
clustering~tendency for adjacency to be transitive! as well as
relatively short paths between all vertices. The most a
lyzed model for such a graph is the Watts-Strogatz gra
where a cyclic lattice~with all k near neighbors connected! is
occasionally rewired randomly. In essence, this superimpo
two graphs: a cyclic lattice introducing local clustering e
fects, and a random graph producing much longer scale
jacencies. The lattice~or partial lattice! embedded within the
graph introduces a natural idea of scale, or range, assoc
with each edge. The clustering behavior derives from
lattice, whilst short connection paths derive from the rand
graph.

The split between~sub!graphs on two scales within th
Watts-Strogatz graph suggests we consider other graphs
rived from superposing many~sub!graphs at many distinc
length scales. This may seem more natural than a two-s
model, providing that the density and scale of the sepa
subgraphs are properly related so that the final graph h
well-behaved vertex degree distribution.@This approach is
analogous to that underlying fractal~self-affine! structures,
obeying scaling laws over a range of different leng
scales—differing by orders of magnitude, if not actua
from the infinitesimal to the infinite.# These are the subject
of this paper.

We show how such graphs with power-law probabil
can be defined and parametrized by two simple parame
and generated stochastically in a manner analogous to
Erdos-Renyi model where the probability of an edge exist
is range~scale! dependent. The vertices are to be thought
as ordered in a possibly incomplete one-dimensional latt
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so that all edges inherit a natural length scale or range,
rived from the distance between the end vertices in the
derlying lattice ordering.

An interesting point is that such graphs may be defin
over an infinite number of vertices, possessing edges on
infinite number of scales, whilst the degree distribution h
finite moments. In fact the mathematics of the generat
function and the clustering coefficient is more elegant in
infinite case since there are no truncated series arising f
edge effects. Such types of graphs, describing long-ra
bond processes, have been introduced in percolation th
~see the discussion by Grimmett in Ref.@5#, and the refer-
ences therein!, where conditions for the existence of infinit
connected components are sought. Quite general graph
infinite vertices where the mean range over all edges is fin
are known to contain no such component. The spec
classes of graphs introduced here, where the relation betw
range and edge probability is given by a power scaling l
~rather than a polynomial!, and their small-world clustering
properties, do not appear to have been considered thoug

There are two recent reviews on the statistical mecha
and evolution of networks@6,7# which provide further back-
ground on the fast progress in related subjects, and unde
ing analytical methods.

Next we turn to a practical problem: the inverse proble
This problem does not readily arise with simple rando
graphs, since all edges are equally likely and the vertices
unordered. Suppose we are given a large sparse graph,
list of vertices and edges, which we believe has been ge
ated by, or can be modeled by, a suitably parametrized
sion of our model. Then we wish to order the vertices of t
given graph in a way that it is most likely to have be
generated. This yields extra information that can be
pended to the data, since, once ordered, every edge inhe
natural length scale. Of course, the ordering must reflect
probabilistic occurrences of edges of all length scale: he
it must respect the local and global structure of the grap

We will introduce a maximum likelihood method to rea
ize a given graph as a member of our class of graphs~suit-
ably calibrated by global properties of the data!. This method
©2002 The American Physical Society02-1
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can be verified directly for graphs originating from the mod
class whose vertices have been shuffled to hide the und
ing structure.

In practice, when we are given information to be inte
preted as a graph, it may contain errors: actual edges tha
missing in the data, and edges that are erroneously prese
the data. We demonstrate that our proposed solution to
inverse problem is robust to small numbers of errors of th
types.

The applications we have in mind arise in bioinformatic
where high throughput devices mean that large amount
gene-to-gene or protein-to-protein interaction data will b
come increasingly available, both within commercial a
public research. The relationships between genes, or the
teins they code for, and~intracellular up to organism! func-
tions are ‘‘many to many.’’ This is directly observed and al
a logical consequence of the size of the genome~s! ~typically
thousands to tens of thousands of genes! when considered in
relation to the plethora of such functions. However ea
work, for example, in the analysis of coexpression data fr
microarrays has used clustering and discrimination conce
which are inherently ‘‘many to one.’’ Therefore, graph the
retic approaches for describing and modelling the struc
of all gene-to-gene or protein-to-protein relationships offe
step forwards. Nodes~vertices! represent proteins~genes!
whilst edges represent associations. These graphs wil
large and sparse. The data is also likely to contain error
both types.

We illustrate both the framework and methods develop
in this paper with an example application to the yeast p
teome.

BASIC DEFINITIONS

Here we propose a simple model for a class of spa
graphs that inherit a simple notion of intervertex leng
scale, or range, by being embedded in a possibly incomp
one-dimensional lattice. Generalizations to a cyclic latt
are immediate. The motivation for this is to define a suita
class of stochastic graphs which~1! may show the small-
world characteristics of ‘‘localized’’ clustering coupled wit
longer range connectivity;~2! are amenable to analysis, an
characterized by simple global parameters;~3! have a hierar-
chy of edges on different scales~ranges!, for which the suc-
cessively ‘‘longer range’’ edges are less and less likely
exist; and~4! may be used as candidate frameworks with
which to resolve inverse problems via maximum likeliho
or other optimization methods.

We begin by considering classes of sparse graphs tha
defined over an infinite number of vertices and possess
infinite number of edges, such that the average vertex de
is finite. In practice, we will be interested in finite versions
such graphs, simply truncated, but the analysis of the p
erties in the infinite case is more elegant and provides s
useful insights.

Graphs on infinite vertices

Consider a graph based on a one-dimensional enum
tion of verticesvk ~for k5...,22,21,0,1,2,...), where the
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probability of an edge connecting vertexv i to vertexv j is
given by a function of the form

pi j 5 f ~ u j 2 i u!,

where f maps the positive integers onto@0, 1#, and is such
that f (k) tends to zero ask tends to infinity.

We define the range of the edge to beu i 2 j u. Note that the
probabilistic structure is invariant to translation and refle
tion with respect to the underlying vertex ordering.

We introduce the generating functionG0(x) @8# for the
probability distribution of vertex degree, defined by

G0~x!5(
j 50

`

Pjx
j ,

where Pj is the probability that a randomly chosen vert
has degreej.

In our case we can express this as an infinite product
considering the possible edges connected to an arbitrary
tex v0 :

G0~x!5)
kÞ0
2`

`

@~12p0k!1p0kx#.

As beforep0k is the probability thatv0 is adjacent tovk .
This follows since the coefficient ofxk is precisely the prob-
ability that v0 is adjacent to exactlyk distinct vertices, sum-
ming over all such independent combinations. Hence
have

G0~x!5)
k51

`

@11 f ~k!~x21!#2.

Now consider the specific class of graphs where the pr
ability that vertexv i is connected to vertex isv j by an edge
is given by the power-law form

pi j 5 f ~ u j 2 i u!5al u j 2 i u21.

Here the parametersa and l are in ~0, 1#. If a51 then
neighbors are certainly connected, by edges with rang
and the graph contains a Hamiltonian path connecting
immediate neighbors, regardless ofl. If a,1, then global
connectedness depends on both parameters. Asl increases
from zero, the expected number of the long range asso
tions increases.

Our graph could be thought of as the superposition
many subgraphs, with each subgraph containing only ed
of a certain rangek, say k51,2,..., which are present with
probability alk21.

Our first task is to show how the global parametersa and
l relate to some of the graphs global characteristics.

Consider a given vertex, sayv0 , then the expected num
ber of neighbors is given by a geometric progression:

z52a/~12l!.
2-2
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Now, sincep0k5al uku21, we have a generating function i
the form

G0~x!5)
k51

`

~12alk211alk21x!2.

We have, by direct calculation,

G08~x!52G0~x!(
k51

`

alk21/~12alk211alk21x!.

It is clear thatG0(1)51, andG08(1)5z52a/(12l), the
expected vertex degree. Successive derivatives ofG0(x),
evaluated atx51, can be used to calculate successive m
ments of the vertex degree distribution. Similarly, we m
calculate values forPk from successive derivatives ofG0(x)
evaluated atx50. In fact, if a51, then bothG0(0)50, and
G08(0)50, so thatP05P150: every vertex has at least tw
neighbors.

We also have

G09~x!5
G08~x!2

G0~x!
22G0~x!

3 (
k51

`

~alk21!2/~12alk211alk21x!2.

Hence

G09~1!5
z2

2 H 113l

11l J ,

which is the expected number of second neighbors of a
tex, denoted byz2 .

Now, z2 behaving like the square ofz is the sort of be-
havior seen in random graphs~normal Poisson random
graphs for instance—however these do not show the clus
ing behavior discussed below!. The Watts-Strogatz clusterin
number,C, @2,3# defined for the graph, is a measure of t
tendency of adjacency to be transitive. It is defined as
lows. Consider all connected triplets of vertices, that is, tr
lets $v i ,v j ,vk% having two edges connectingv i andv j and
vk . ThenC is the fraction of these for which there is also
edge connectingv i andvk directly, completing the triangle.

Consider an arbitrary vertex, sayv0 , and the possible
connected triplets centered there. We have

C5

(
iÞ0
j Þ0
j . i

poipo jpi j

(
kÞ0
lÞ0
l .k

pokpol

.

The denominator gives the expected number of conne
triplets $v i ,v0 ,v j% centered atv0 . The numerator gives the
expected number of triangles$v i ,v0 ,v j% centered atv0 .
06670
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Sincev0 was arbitrary, these are the same for all vertic
Hence the ratio gives the fraction of all connected tripl
which are also triangles. It is straightforward to deduce t

C5

3(
i 51

`

(
j 51

`

f ~ i ! f ~ j ! f ~ i 1 j !

1

2
G09~1!

.

By substituting directly for the probabilities, we have, b
direct calculation,

C5
3al

~11l!~113l!
.

Note that fora51, asl tends to 1,C tends to 3
8. This is

because the graph approaches a completely connected g
in a nonuniform way—there are always vertices far enou
away to make adjacency improbable.

C is not a monotonic function ofl. For fixeda there is a
local maximum atl5321/2. Hence, there is a kind of ‘‘op-
timum’’ clustering connectivity at this maximum. Ifl in-
creases further, the probability of having a long range nei
bor that is not also connected to more localized neighb
increases, henceC decreases.

If we seta5z(12l)/2, then with the average vertex de
gree,z, fixed, l may vary in (max$0,122/z%,1#. Hence with
this parameterizationl controls the balance between the pr
ponderance of long and short range edges. AgainC, given by

C5
3z~12l!l

2~11l!~113l!
,

has a maximum, this time atl5(81/221)/750.261...~if l is
allowed to range this low!; and C is zero at both extreme
l50,1 if z,2.

If we approximate such a graph stochastically on a la
number of vertices, we may contrast the theoretical curve
C with exact calculations. This is shown in Fig. 1 for thre
fixed values forz.

It is advantageous when considering inverse problem
have a class of graphs, such as this, with an explicit algeb
formula for C, since, given a graph as a list of vertices a

FIG. 1. Cluster coefficient estimates.
2-3
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edges, we will wish to calibrate the global parameters ba
on matching global properties such asC.

The small-world property, as defined by Watts and St
gatz @2,3#, is a combination of the connectedness appar
within classical random graphs,G(n,p), and the clustering
behavior, as measured byC. Above we see that, forz fixed,C
is relatively at high at middle values forl, falling linearly as
l approaches unity to the value expected for a random gr
@p5z/(n21)#.

Connectedness is measured by the median~over all verti-
ces! of the mean shortest path lengths~from a vertex to all
other vertices!, see Watts@2#. As for other small-world mod-
els, we see that this measure falls to its asymptotic value
random graphs~wherel51) at much smaller values forl.
This is shown, for three values ofz, in Fig. 2. Hence we have
the small-world effect at intermediate values ofl, say from
shortly after the minimum possible value forl, up to 0.9 or
so.

Before concluding this section, we must point out th
some graphs of this type may have explicit generating fu
tions. Recall that this is given by

G0~x!5)
kÞ0
2`

`

„~12p0k!1p0kx….

Then if we choose to set

pi , j5 f ~ u j 2 i u!5
b

~ u i 2 j up!2 ,

for someb fixed in (0,p2#, then we have

G0~x!5)
k51

` S 12
b

~kp!2 ~12x! D 2

5
sin2Ab~12x!

b~12x!
.

Hence it follows directly thatz5b/3, z254b2/45, Po
5sin2(b1/2)/b, and much else. Grimmet also considers t
type of graph, defined by asymptotic polynomial behav
@5#.

FIG. 2. Estimates of the median of the mean shortest p
lengths.
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LARGE FINITE GRAPHS

In practice, we will deal with graphs with a very large, b
finite numbern of vertices. There the assumptions used
the case of an infinite number of vertices will be violated d
to ‘‘edge effects’’ at either end of the underlying orderin
Since the longer range edges are successively less like
occur, the edges of the graphs are only seen within a kin
boundary layer@whose size is dependent on the decay
f (k)]. Within, the averages and sums used to calculatez, z2 ,
C, etc., for a vertex will be valid approximations though; a
if the graph is large, these estimates will dominate in de
ing the expected behavior of the graph as a whole. We
see this effect explicitly by considering the behavior ofC
wherel varies towards unity. In the limit we must haveC
5a rather than 3a/8.

Of course this difference is not highly problematic if w
fix z as a parameter rather thana, so that asl approaches

th

FIG. 3. Search algorithm.
2-4
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unity all edges become equally probable, with probabilityp
5a5z/(n21), which is close to the zero value obtained
the infinite case@wherea5z(12l)/2].

Below we will wish to estimate values fora andl con-
sistent~albeit for infinite graphs! with the values ofz andC
observed for actual finite graphs. Hence ifn is not large,
some care must be taken.

THE INVERSE PROBLEM

Here we introduce an algorithm to take raw interacti
data, estimate the global parameters, and use maximum
lihood modeling to produce an ordering of the vertices~a
permutation of the vertices as originally given! from which
the data is most likely to have been generated.

This is a two-step process. First the graph parametea
and l are estimated from global graph properties~C and z,
for example!. Then we use a search algorithm to find
ordering of the vertices that maximizes the product of
odds over all edges that exist~within the new ordering!.

To be more explicit, ifk( i ) denotes any reordering~per-
mutation! of the original vertices~labeled by i!, then the
likelihood L of the given data being generated in the ord
ing k( i ) by the calibrated model is given by

L5 )
edgesn in j

pk~ i !,k~ j ! )
No edgesn in j

~12pk~ i !,k~ j !!.

Here we usepk( i ),k( j ) to denote the probability that the edg
between verticesk( i ) to k( j ) is present. In maximum likeli-
hood modeling, we wish to find an optimal reordering th
maximizes the likelihood of the actual observations~the
dataset! being generated by the model. We divide and mu
ply the above expression by the probability that each e
which actually exists, does not exist, and then factor
probability of producing the null graph~the graph on the
same number of vertices with no edges present at all!. Hence
we wish to findk so as to maximize

FIG. 4. Verification test: actual vs achieved orderings.
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L5 )
edgesn in j

pk~ i !,k~ j !

12pk~ i !,k~ j !
P~B !.

The termP(B) is the probability of generating no edges o
N vertices for the given values ofa andl and is a constan
for all k, so plays no role~and consequently does not need
be calculated!. This makes the maximum likelihood mode
ing efficient.

The above equation shows us how to trade orderings
the graph. If we move a vertex within the present orderi
then we change the distances associated with many ed
some get shorter, some get longer. The proposed reorde
is more acceptable if the product of the odds increases.

This has led us to develop an algorithm to search fo
suitable representation of the given graph. In essence,

FIG. 5. Plots of the adjacency matrices before and after reor
ing.
2-5
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FIG. 6. Results of applying the
inverse algorithm.
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start from any given ordering and then sort it further
trading of the odds of the reordered edges appearing in
model ~suitably calibrated via the global parameters!. The
algorithm applied to find permutations is a ‘‘double leve
algorithm that we have devised specifically for this purpo
At an individual vertex level, we allow swaps between ind
vidual pairs of vertices: this tends to get local blocks of v
tices, that is sequences of neighboring vertices that are
nected together. Then, on a macroscopic level, we al
whole block swaps and block flips~reverses!. In practice, it
is necessary to move up and down between these two le
of manipulation. The algorithm is summarized in Fig. 3.

In the first example, below we carried out a test on
100-vertex graph. We first generated a test graph using
model, and then shuffled up the vertices to create a rand
ized ordering. In this form, the model graph cannot descr
the data since there is no relationship between relative p
imity of the shuffled ordering and the likelihood of edg
occurring. We then input the resulting graph~as a list of
edges denoted by the shuffled ordering! into the search algo
rithm ~swaps, block cycles, and block flips!. The model
trades long and short range associations in permutation
the initial shuffled order. The result shown in Fig. 4 sho
that we achieved an almost correct ordering~except for the
overall sense of direction!. However, some long range ass
ciations are permissible~allowed by the model! whilst
closely interrelated vertices are not ordered closely toget
In Fig. 5, we show before and after plots of the adjacen
matrices, depicting an edge between vertexi and vertexj as
a blob within a symmetrical 2003200 matrix plot. After the
optimally achieved reordering, we see that most edges
now local~near the diagonal! with successively longer rang
edges becoming successively rare, as the model predict

One of the problems encountered within standard netw
analysis is the ‘‘all or nothing’’ nature of things such as pa
length or connectivity, when the data~a! contains erroneous
associations~associations which should not be there! ~b! has
missing associations.

We have investigated both these problems. In our effor
construct a realization of a given graph~a given set of edges!
as a member of a class of graphs, we have shown tha
realization is robust to perturbations of both types of pro
lems. For example, if we take a numerically generated c
and delete or add a few associations, then the maxim
06670
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likelihood algorithm, which optimizes the fit of the graph
the class, remains stable. In essence, the metrics~distances!
we find from an inferred ordering of the disordered data
stable to a ‘‘small’’ number of such perturbations in the da
Actually, the above example, demonstrates this already, s
we might have generated any other nearby graph and
tained a similar result.

Next we show an example drawn from bioinformatics@9#
where protein-protein interactions have been observed
the yeast proteome@10–12# containing over 3000 proteins
In Fig. 6 we show the results of applying the inverse alg
rithm, with suitable parameters, to this large sparse gr
~the vertices represent individual identified proteins!. The re-
sult shows a classified protein graph and a greatly simpli
structure. The relocation of proteins within the proteome
useful, in that resultant near neighbors, in local cliques, m
possess shared or complementary functional roles. This
be verified directly where proteins are annotated.

CONCLUSIONS

We have introduced a class of range-dependent ran
graphs which we have shown can possess small-world c
acteristics, and can be described by simple global par
eters. We have analyzed their properties and indicated
an explicit formula can approximate the Watts-Strogatz cl
tering number when the graphs are very large.

We have devised and demonstrated a maximum likelih
algorithm that can realize a given graph as a member of
calibrated class of graphs. This optimal vertex ordering
sentially resolves the inverse problem.

We have applied these ideas to test datasets, for va
tion, and also to a large yeast proteome dataset. The re
are encouraging, indicating possible future analysis and
plications in classifying large sparse graphs, with sma
world properties, and in realizing them: the optimal orderi
representing additional information depending on the acc
tance of the modeling concept. For bioinformatics the res
are valuable, in that they are robust to data errors and
optimal ordering may be exploited by building probabilist
models inferring cofunctional roles of proteins or genes. T
will be the direction of future work.
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