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Range-dependent random graphs and their application to modeling large
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In this paper we consider the problem of characterizing and modeling large-scale networks using classes of
range-dependent graphs which possess appropriate small-world properties. The application we have in mind is
to bioinformatics, where methods of rapid protein identification mean that such proteome datasets, listing
various observed protein-protein associations, will become more and more prevalent. We introduce a class of
range-dependent graphs, governed by a power law relating intervertex range to edge probability, which are
amenable to analysis, and for which macroscopic graph parameters are given by explicit forms. We show how
these may be employed in representing a given network using a maximum likelihood approach. This in turn
annotates every given edge with its range, representing the tendency for such an association to be transitive.
We apply this technique to published proteome data, and demonstrate that known protein associations are thus
identified.
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INTRODUCTION so that all edges inherit a natural length scale or range, de-
rived from the distance between the end vertices in the un-
The study of random graphs, long dominated by the worlkderlying lattice ordering.
on the Erdos-Renyi mod¢ll], G(n,p), where an edge be- An interesting point is that such graphs may be defined
tween any pair fronm vertices is present with a certain prob- over an infinite number of vertices, possessing edges on an
ability, p, has recently been extended to small-world graphsnfinite number of scales, whilst the degree distribution has
[2—4]. The goal is to generate graphs with high degree ofinite moments. In fact the mathematics of the generating
clustering(tendency for adjacency to be transitias well as  function and the clustering coefficient is more elegant in the
relatively short paths between all vertices. The most anainfinite case since there are no truncated series arising from
lyzed model for such a graph is the Watts-Strogatz graphedge effects. Such types of graphs, describing long-range
where a cyclic latticéwith all k near neighbors connectéd  bond processes, have been introduced in percolation theory
occasionally rewired randomly. In essence, this superimposgsee the discussion by Grimmett in RE5], and the refer-
two graphs: a cyclic lattice introducing local clustering ef- ences therein where conditions for the existence of infinite
fects, and a random graph producing much longer scale adtonnected components are sought. Quite general graphs on
jacencies. The latticéor partial lattic¢ embedded within the infinite vertices where the mean range over all edges is finite,
graph introduces a natural idea of scale, or range, associatefle known to contain no such component. The specific
with each edge. The clustering behavior derives from thelasses of graphs introduced here, where the relation between
lattice, whilst short connection paths derive from the randonrange and edge probability is given by a power scaling law
graph. (rather than a polynomigland their small-world clustering
The split betweer(subgraphs on two scales within the properties, do not appear to have been considered though.
Watts-Strogatz graph suggests we consider other graphs, de- There are two recent reviews on the statistical mechanics
rived from superposing manfsubgraphs at many distinct and evolution of networkgs,7] which provide further back-
length scales. This may seem more natural than a two-scatgound on the fast progress in related subjects, and underly-
model, providing that the density and scale of the separating analytical methods.
subgraphs are properly related so that the final graph has a Next we turn to a practical problem: the inverse problem.
well-behaved vertex degree distributidhis approach is This problem does not readily arise with simple random
analogous to that underlying fractédelf-affing structures, graphs, since all edges are equally likely and the vertices are
obeying scaling laws over a range of different lengthunordered. Suppose we are given a large sparse graph, as a
scales—differing by orders of magnitude, if not actually list of vertices and edges, which we believe has been gener-
from the infinitesimal to the infinit¢.These are the subjects ated by, or can be modeled by, a suitably parametrized ver-
of this paper. sion of our model. Then we wish to order the vertices of the
We show how such graphs with power-law probability given graph in a way that it is most likely to have been
can be defined and parametrized by two simple parametergenerated. This yields extra information that can be ap-
and generated stochastically in a manner analogous to thgended to the data, since, once ordered, every edge inherits a
Erdos-Renyi model where the probability of an edge existinchatural length scale. Of course, the ordering must reflect the
is range(scalg dependent. The vertices are to be thought ofprobabilistic occurrences of edges of all length scale: hence
as ordered in a possibly incomplete one-dimensional latticeit must respect the local and global structure of the graph.
We will introduce a maximum likelihood method to real-
ize a given graph as a member of our class of grapbi-
*Email address: peterg@numbercraft.co.uk ably calibrated by global properties of the dafehis method
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can be verified directly for graphs originating from the modelprobability of an edge connecting vertex to vertexv; is
class whose vertices have been shuffled to hide the underlgiven by a function of the form
ing structure. o
In practice, when we are given information to be inter- pi=f(li—il),
preted as a graph, it may contain errors: actual edges that are
missing in the data, and edges that are erroneously present\ieref maps the positive integers onf0, 1], and is such
the data. We demonstrate that our proposed solution to th@at f(k) tends to zero ak tends to infinity.
inverse problem is robust to small numbers of errors of these \We define the range of the edge to|be j|. Note that the
types. probabilistic structure is invariant to translation and reflec-
The applications we have in mind arise in bioinformatics,tion with respect to the underlying vertex ordering.
where high throughput devices mean that large amounts of We introduce the generating functigy(x) [8] for the
gene-to-gene or protein-to-protein interaction data will beJprobability distribution of vertex degree, defined by
come increasingly available, both within commercial and
public research. The relationships between genes, or the pro- - .
teins they code for, an@intracellular up to organisjnfunc- Go(x)= ZO Pix,
tions are “many to many.” This is directly observed and also .
a logical consequence of the size of the gen@ngypically
thousands to tens of thousands of genesen considered in
relation to the plethora of such functions. However early
work, for example, in the analysis of coexpression data fronl:0
microarrays has used clustering and discrimination concept
which are inherently “many to one.” Therefore, graph theo-
retic approaches for describing and modelling the structure o
of all gene-to-gene or protein-to-protein relationships offer a _ _
step forwards. Nodesgvertices represent proteinggenes GolX) kl;[o [(2=Pou) + Poix].
whilst edges represent associations. These graphs will be
large and sparse. The data is also likely to contain errors
both types. his follows since the coefficient of is precisely the prob-
We illustrate both the framework and methods developeJ - . ) sP ythe pro
ability thatv is adjacent to exactli distinct vertices, sum-

Lgotmz paper with an example application to the yeast pro_r’ning over all such independent combinations. Hence we

have

where P; is the probability that a randomly chosen vertex
has degreg.

In our case we can express this as an infinite product, by
nsidering the possible edges connected to an arbitrary ver-
ex UO:

—o0

Ol\s beforepg is the probability thatv, is adjacent tow,.

BASIC DEFINITIONS

Here we propose a simple model for a class of sparse GO(X)zkll [1+f(k)(x=1)]%
graphs that inherit a simple notion of intervertex length
scale, or range, by being embedded in a possibly incomplet,q
one-dimensional lattice. Generalizations to a cyclic lattic
are immediate. The motivation for this is to define a suitabl
class of stochastic graphs whi¢h) may show the small-
world characteristics of “localized” clustering coupled with (il = il
lon o . pij=f(lj—i)=ax .

ger range connectivity(2) are amenable to analysis, and

characterized by simple global paramet€8;have a hierar- Here the parametera and \ are in (0, 1. If a=1 then

chy qf edg“es on dlfferen"t scalémnges;, for which the suc- neighbors are certainly connected, by edges with range 1,
cessively “longer range” edges are less and less likely to

exist; and(4) may be used as candidate frameworks withinand the graph contains a Hamiltonian path connecting all

which to resolve inverse problems via maximum Iikelihoodimmediate neighbors, regardless JafIf <1, then global
D P connectedness depends on both parameters. lisreases
or other optimization methods.

X L from zero, the expected number of the long range associa-
We begin by considering classes of sparse graphs that A€ < increases
defined over an infinite number of vertices and possess an our graph c.ould be thought of as the superposition of

infinite number of edges, such that the average vertex degr(?ﬁany subgraphs, with each subgraph containing only edges
is finite. In practice, we will be interested in finite versions of of a certain rang,ek sayk=1,2,.... which are present with

such graphs, simply truncated, but the analysis of the prop:- . ko1
erties in the infinite case is more elegant and provides som%mbab'l.Ity an”
Ouir first task is to show how the global parametersnd

useful insights. \ relate to some of the graphs global characteristics.
Consider a given vertex, say, then the expected num-

ber of neighbors is given by a geometric progression:
Consider a graph based on a one-dimensional enumera-

tion of verticesv, (for k=...,—2,—-1,0,1,2,...), where the z=2al(1—N\).

ow consider the specific class of graphs where the prob-
eability that vertexv; is connected to vertex is; by an edge
8s given by the power-law form

Graphs on infinite vertices
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Now, sincepgc=an¥~1, we have a generating function in C as A varies, for z=1.5, 2.5 and 3.5, in theory
the form and using 500 vertices

Go(x)=[] (1—ar* 14 ank1x)2.
k=1
We have, by direct calculation,

GH(X)=2Go(x) >, aN"Y(1— a1+ ar1x).
k=1

It is clear thatGy(1)=1, andGy(1)=z=2a/(1—N\), the
expected vertex degree. Successive derivative§g(ix),
evaluated ak=1, can be used to calculate successive mo-
ments of the vertex degree distribution. Similarly, we may
calculate values foP, from successive derivatives &f(x)
evaluated ak=0. In fact, if «=1, then bothG,(0)=0, and
G((0)=0, so thatP,=P,=0: every vertex has at least two
neighbors.

We also have

FIG. 1. Cluster coefficient estimates.

Sincev, was arbitrary, these are the same for all vertices.
Hence the ratio gives the fraction of all connected triplets
which are also triangles. It is straightforward to deduce that

n Gé(x)z —
GO(X): W—ZGO(X) C=

©

X D (@ "1)2/(1— an* "1+ ank"1x)2,
k=1

32, 2, f(OID+])

1 n
EGo(l)

By substituting directly for the probabilities, we have, by
direct calculation,
Hence
3a\
143\ C=TnaTan
1))

" 22
GO 1) = ?

Note that fora=1, as\ tends to 1,C tends to3. This is
which is the expected number of second neighbors of a veibecause the graph approaches a completely connected graph
tex, denoted by,. in a nonuniform way—there are always vertices far enough

Now, z, behaving like the square @fis the sort of be- away to make adjacency improbable.
havior seen in random graphormal Poisson random C is not a monotonic function of. For fixeda there is a
graphs for instance—however these do not show the clustetecal maximum at =32, Hence, there is a kind of “op-
ing behavior discussed belgpwl he Watts-Strogatz clustering timum” clustering connectivity at this maximum. K in-
number,C, [2,3] defined for the graph, is a measure of thecreases further, the probability of having a long range neigh-
tendency of adjacency to be transitive. It is defined as folbor that is not also connected to more localized neighbors
lows. Consider all connected triplets of vertices, that is, trip-increases, hencé decreases.
lets {v; ,vj,vy} having two edges connecting andv; and If we seta=2z(1—\)/2, then with the average vertex de-
vk- ThenC is the fraction of these for which there is also an gree,z, fixed, A may vary in (maf0,1—2/z},1]. Hence with
edge connecting; andv directly, completing the triangle. this parameterizatioh controls the balance between the pre-
Consider an arbitrary vertex, say,, and the possible ponderance of long and short range edges. AGaigiven by
connected triplets centered there. We have

o 3z(1-MA
C2(L+N)(1+30)°
2 PoiPojPij ( ) )
i#0 has a maximum, this time at=(82—1)/7=0.261...(if \ is
_ 12 allowed to range this loyy and C is zero at both extremes
=" A=0,1if z<2.
Z PokPol If we approximate such a graph stochastically on a large
k#0 number of vertices, we may contrast the theoretical curve for
'Iig C with exact calculations. This is shown in Fig. 1 for three

fixed values forz.
The denominator gives the expected number of connected It is advantageous when considering inverse problems to
triplets {v; ,vq,v;} centered abv,. The numerator gives the have a class of graphs, such as this, with an explicit algebraic
expected number of triangle®;,vq,v;} centered at,. formula for C, since, given a graph as a list of vertices and
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median of mean shortest path length using 500
vertices as A varies
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FIG. 2. Estimates of the median of the mean shortest path Consolid
lengths. Convergence

edges, we will wish to calibrate the global parameters based
on matching global properties such @s

The small-world property, as defined by Watts and Stro-
gatz[2,3], is a combination of the connectedness apparent
within classical random graph&§&(n,p), and the clustering
behavior, as measured Ky Above we see that, farfixed, C
is relatively at high at middle values fay, falling linearly as
\ approaches unity to the value expected for a random graph
[p=2/(n—1)].

Connectedness is measured by the metbaer all verti-
ces of the mean shortest path lengttisom a vertex to all
other verticey see Watt$2]. As for other small-world mod-
els, we see that this measure falls to its asymptotic value for
random graphgwherex=1) at much smaller values fox.
This is shown, for three values ofin Fig. 2. Hence we have
the small-world effect at intermediate values)gfsay from
shortly after the minimum possible value foy up to 0.9 or
Ss0.

Before concluding this section, we must point out that
some graphs of this type may have explicit generating func-

Swap
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Test
Likelihood

Accept/Reject

Flip
Blocks

Test
Likelihood

Accept/Reject

= I T e [

h

tions. Recall that this is given by

Go(x)= kl;[o (1= pox) + PoX)-

—oo

Then if we choose to set

b
pi,j:f(|j_i|)zmz,

for someb fixed in (072], then we have

2 sinf\b(1-x)

. b
Go0= [, 1_W(1_X)> ~Th(Ix)

Hence it follows directly thatz=b/3, z,=4b?/45, P,

Stop Y/N?

FIG. 3. Search algorithm.
LARGE FINITE GRAPHS

In practice, we will deal with graphs with a very large, but
finite numbern of vertices. There the assumptions used in
the case of an infinite number of vertices will be violated due
to “edge effects” at either end of the underlying ordering.
Since the longer range edges are successively less likely to
occur, the edges of the graphs are only seen within a kind of
boundary layefwhose size is dependent on the decay of
f(k)]. Within, the averages and sums used to calcutarg,

C, etc., for a vertex will be valid approximations though; and
if the graph is large, these estimates will dominate in defin-
ing the expected behavior of the graph as a whole. We can
see this effect explicitly by considering the behavior @f
where\ varies towards unity. In the limit we must ha@

=sir(b*?)/b, and much else. Grimmet also considers this= « rather than a/8.
type of graph, defined by asymptotic polynomial behavior Of course this difference is not highly problematic if we

[5].

fix z as a parameter rather than so that as\ approaches
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FIG. 4. Verification test: actual vs achieved orderings.

50

200
unity all edges become equally probable, with probabiity
=a=12/(n—1), which is close to the zero value obtained in
the infinite casgwherea=2z(1-\)/2].

Below we will wish to estimate values far and\ con-
sistent(albeit for infinite graphswith the values oz andC
observed for actual finite graphs. Hencenifis not large,
some care must be taken.

150

THE INVERSE PROBLEM 100

Here we introduce an algorithm to take raw interaction
data, estimate the global parameters, and use maximum like-
lihood modeling to produce an ordering of the verti¢as
permutation of the vertices as originally giyeinom which 20
the data is most likely to have been generated.

This is a two-step process. First the graph parameters
and\ are estimated from global graph properti€and z,
for exampl@. Then we use a search algorithm to find an ]
ordering of the vertices that maximizes the product of the 7 =0 00 % 200
odds over all edges that exitithin the new ordering FIG. 5. Plots of the adjacency matrices before and after reorder-

To be more explicit, ifk(i) denotes any reorderinger- ing.
mutation of the original vertices(labeled byi), then the
likelihood L of the given data being generated in the order-

ing k(i) by the calibrated model is given by L= Mp(@)_
edges ;v 1- Py, k(j)
Lzedgle_s[vi " P kb, e<£[esvi v (1= Prip i) The termP(&) is the probability of generating no edges on

N vertices for the given values @f and\ and is a constant
Here we usepj i) to denote the probability that the edge for all k, so plays no rol¢and consequently does not need to
between verticek(i) to k(j) is present. In maximum likeli- be calculated This makes the maximum likelihood model-
hood modeling, we wish to find an optimal reordering thating efficient.

maximizes the likelihood of the actual observatioftbe The above equation shows us how to trade orderings of
datasetbeing generated by the model. We divide and multi-the graph. If we move a vertex within the present ordering,
ply the above expression by the probability that each edgéhen we change the distances associated with many edges:
which actually exists, does not exist, and then factor thesome get shorter, some get longer. The proposed reordering
probability of producing the null grapkthe graph on the is more acceptable if the product of the odds increases.
same number of vertices with no edges present attdince This has led us to develop an algorithm to search for a
we wish to findk so as to maximize suitable representation of the given graph. In essence, we
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start from any given ordering and then sort it further bylikelihood algorithm, which optimizes the fit of the graph to
trading of the odds of the reordered edges appearing in thihe class, remains stable. In essence, the mdtlissances
model (suitably calibrated via the global paramejerShe  we find from an inferred ordering of the disordered data are
algorithm applied to find permutations is a “double level” stable to a “small” number of such perturbations in the data.
algorithm that we have devised specifically for this purposeActually, the above example, demonstrates this already, since
At an individual vertex IeVel, we allow SWapS between indi- we m|ght ha\/e generated any Other nearby graph and Ob_
vidual pairs of vertices: this tends to get local blocks of ver-tained a similar result.

tices, that is sequences of neighboring vertices that are con- Next we show an example drawn from bioinformatie$
nected together. Then, on a macroscopic level, we alloWyare protein-protein interactions have been observed for
whole block swaps and block fligseverses In practice, it he yeast proteomEL0—17 containing over 3000 proteins.

is necessary to move up and down between these two Ieve;ﬁ Fig. 6 we show the results of applying the inverse algo-

of manlpul_atlon. The algonithm is summ_arlzed in Fig. 3. rithm, with suitable parameters, to this large sparse graph
In the first example, below we carried out a test on a . o . - )
ghe vertices represent individual identified protgifishe re-

100-vertex graph. We first generated a test graph using th . ) T
model, and then shuffled up the vertices to create a rando ult shows a classified protein graph and a greatly simplified
’ structure. The relocation of proteins within the proteome is

ized ordering. In this form, the model graph cannot describ , . . :
the data since there is no relationship between relative proxSeful, in that resultant near neighbors, in local cliques, may

imity of the shuffled ordering and the likelihood of edges POSS€SS sha'red or complemen.tary functional roles. This can
occurring. We then input the resulting graghs a list of be verified directly where proteins are annotated.

edges denoted by the shuffled ordejiimgo the search algo-

rithm (swaps, block cycles, and block flippsThe model

trades long and short range associations in permutations of CONCLUSIONS

the initial shuffled order. The result shown in Fig. 4 shows

that we achieved an almost correct orderiegcept for the We have introduced a class of range-dependent random
overall sense of directionHowever, some long range asso- 9r@Phs which we have shown can possess small-world char-

ciations are permissibldallowed by the model whilst acteristics, and can be desc.ribed by .simple glopal param-
closely interrelated vertices are not ordered closely togethefters. We have analyzed their properties and indicated how
In Fig. 5, we show before and after plots of the adjacencyan explicit formula can approximate the Watts-Strogatz clus-
matrices, depicting an edge between veitexd vertexj as  tering number when the graphs are very large.

a blob within a symmetrical 200200 matrix plot. After the We have devised and demonstrated a maximum likelihood
optimally achieved reordering, we see that most edges ar@gorithm that can realize a given graph as a member of our
now local(near the diagonalwith successively longer range calibrated class of graphs. This optimal vertex ordering es-
edges becoming successively rare, as the model predicts. sentially resolves the inverse problem.

One of the problems encountered within standard network We have applied these ideas to test datasets, for valida-
analysis is the “all or nothing” nature of things such as pathtion, and also to a large yeast proteome dataset. The results
length or connectivity, when the data) contains erroneous are encouraging, indicating possible future analysis and ap-
associationgassociations which should not be thefle) has  plications in classifying large sparse graphs, with small-
missing associations. world properties, and in realizing them: the optimal ordering

We have investigated both these problems. In our effort taepresenting additional information depending on the accep-
construct a realization of a given grafigiven set of edgés tance of the modeling concept. For bioinformatics the results
as a member of a class of graphs, we have shown that ttege valuable, in that they are robust to data errors and the
realization is robust to perturbations of both types of prob-optimal ordering may be exploited by building probabilistic
lems. For example, if we take a numerically generated casmodels inferring cofunctional roles of proteins or genes. This
and delete or add a few associations, then the maximumwill be the direction of future work.
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